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 Introduction  

Understanding how structural defects influence the 

optoelectronic performance of silicon semiconductor wafers is 

crucial for optimising device efficiency and reliability. 

Traditional univariate approaches , such as tracking Raman 

peak shifts to assess strain or monitoring  photoluminescence 

(PL) intensity to evaluate non -radiative recombination in 

semiconductors, are powerful but inherently limited. They 

require manual feature selection and assume independent 

behaviour of each parameter. This means potentially valuable 

correlations between strain, crystallinity, and emission 

efficiency may be missed, or disco vered only through time -

consuming manual cross-analysis. 

Multivariate analysis techniques, such as Principal Component 

Analysis (PCA) and K-means clustering (KMC), offer a powerful 

alternative. Rather than requiring the user to choose which 

spectral features to examine, these methods analyse the whole 

dataset and automatically extract the most important patterns, 

often revealing trends that might not have been anticipated.  

These methods not only reduce the complexity of high -

dimensional Raman and PL imaging data , but also reveal 

hidden correlations between structural changes and their 

impact on radiative efficiency. By applying multivariate 

techniques, we gain a comprehensive understanding of how 

strain, crystallinity, and defect distributions collectively affect 

silicon’s electronic properties and PL behaviour. Table 1 

highlights several advantages that multivariate analysis has over 

univariate analysis.  

 

Table 1. Why use multivariate analysis? 

Feature Univariate Multivariate 

Feature selection Manual and prior-
knowledge-based 

Automatic, data-driven 

Correlation detection Manual comparison Captured automatically 

Noise handling Limited Low-variance noise 
filtered 

Result interpretation Potential for 
subjectivity 

Mathematical basis 

Scalability Time-consuming Highly scalable 

 
 

 

Materials and Methods  

The silicon wafer analysed in this study was sourced from PI -

KEM and examined using an Edinburgh Instruments RM5 

Confocal Raman Microscope equipped with an 830 nm laser, 

Figure 1. The system was operated in FastMAP ®  mode, 

enabling rapid acquisition of high -resolution spectral images. 

Raman and PL signals were collected simultaneously using a 

front-illuminated-CCD detector capable of detecting NIR 

emissions. 

 
Figure 1. An Edinburgh Instruments RM5 Confocal Raman Microscope. 

 

Multivariate techniques were employed to handle the high -

dimensional data from the Raman -PL images, consisting of 

thousands of spectra across the wafer. PCA was applied to 

reduce data dimensionality and extract the most significant 

spectral variations linked to structural and optical properties.  

Additionally, KMC was used to classify regions with similar 

spectral characteristics, providing clear segmentation of defect 

sites and homogeneous areas. Data processing and 

visualisation were performed in the Ramacle Python-IDE. 

 
PCA Imaging of a Silicon Wafer for 

Simultaneous Raman and PL Analysis  

The region analysed on the wafer is shown in Figure 2a. An 830 

nm laser was used with a 600 gr/mm grating, which meant that 

the dominant phonon mode at 520 cm -1 could be detected 

along with the broad PL band present in the Raman spectrum 

at ca. 1900 cm-1, as seen in Figure 2b. 

The silicon wafer dataset contains interrelated information on 

strain, crystallinity, and emission efficiency that univariate 

analyses often overlook; multivariate techniques, on the other 

hand, automatically extract these relationships, enabling rapid 

and objective interpretation of large datasets.1 
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Figure 2. Initial microscopic and spectroscopic interrogation of the silicon wafer. 
(a) White light image of the area analysed on the wafer. (b) A spectrum recorded 
at 830 nm showing Raman and PL bands from the silicon.  

 

The first multivariate technique used was PCA , a widely used 

dimensionality reduction technique that simplifies complex 

datasets while preserving the most important patterns. 2 To 

better understand what this means, consider the spectral 

image of the silicon wafer that we want to analyse. The image 

was 236 pixels by 230 pixels, totalling 54,280 pixels, each 

containing a spectrum with 1650 datapoints  (or dimensions). 

This is a huge amount of data, and it is computationally 

prohibitive. PCA addresses this issue by performing a linear 

transformation that outputs a small number of new variables, 

designed to maximise the variance from the original dataset, 

called principal components (PCs).  

The Python script used in this Application Note outputs the five 

PCs that explain the dominant Raman and PL modes of 

variation within the original image, along with loading vectors 

that show the bands contributing to the spectral variance. The 

1650 dimensions of the previous dataset are reduced to five , 

and the irrelevant information from the original dataset is 

filtered out as noise. Each pixel within the image will therefore 

have five PC scores (PC1-5), which can be spatially mapped to 

reveal the most relevant spectral changes within the dataset.  

In the silicon wafer image dataset, PC1 and PC3 showed large 

variations in the PL and Raman bands, respectively. Score maps 

and loading vector plots for both PCs are shown in Figure 3. A 

defect, shown in the blue ellipsoid in Figure 3a, was of 

particular interest for this analysis because of the drastic 

difference in spectral response compared to  the rest of the 

wafer. This region corresponds to a thin streak visible in the 

white-light image of the wafer, as shown  in the red box in  

Figure 2a.  

Figures 3a and 3b show the score map and loading plot , 

respectively, for PC1. The loading plot shows that PC1 

represents the contrast between the silicon Raman and PL 

bands, because the Raman band at 520 cm -1 is strongly 

negative and the PL band at 1900 cm -1 is strongly positive. 

Therefore, positive scoring in PC1 corresponds to a dominant 

PL band, and negative scoring corresponds to dampened PL 

with respect to the Raman band. The defect in the PC1 map is 

scored negatively (purple and red), suggesting that the PL in 

this region is weaker relative to the Raman scattering, 

compared to other regions on the wafer.  

The score map and loading point for PC3 are shown in Figures 

3c and 3d, respectively.  The loading plot shows that PC3 

represents changes only in the Raman signature detected from 

the silicon, with almost no contributions from the PL band. 

There are large negative bands and large positive bands both 

in the vicinity of 520 cm-1, which indicates changes in the peak 

position and/or shape of the Raman band. This PC, therefore, 

indicates that PL is diminished in the defect, potentially due to  

a Raman-shift changing phenomenon such as strain.  

Overall, PCA indicates that , in the highlighted defect on the 

silicon wafer, changes in the vibrational properties of the 

material correlate with a decrease in radiative emission.  

While this structure -performance relationship could be 

identified by separately mapping and then comparing the 

Raman peak position and PL intensity, the multivariate analysis 

reveals these correlations directly and objectively, without 

requiring prior knowledge of which spectral features to 

examine. 
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KMC  Imaging of a Silicon Wafer for 

Simultaneous Raman and PL Analysis  

KMC  was also performed on the dataset to more clearly 

visualise the spatial distribution of distinct spectral signatures 

across the silicon wafer. K -means is an unsupervised learning 

method that partitions datasets into ‘k’ clusters based on their 

similarity.3 

In this Application Note, it was used to group image pixels with 

similar Raman and PL spectral signatures into distinct spatial 

regions. It works by assigning pixels to clusters, minimising the 

sum of squares within each cluster, and calculating the mean 

spectrum for each cluster. In the Python script used, the 54,280 

spectra making up the  silicon wafer image were divided 

among ten clusters . Each cluster was imaged discretely to 

visualise the heterogeneity of the wafer in a way that may not 

have been immediately apparent in the continuous 

colourmaps used in PCA imaging. The KMC image of the 

wafer is shown in Figure 4a.  

The cluster image in Figure 4a clearly delineates the defect 

structure identified earlier, with significant inter-defect variation 

highlighted by Cluster 6 (green) and Cluster 3 (pink). The mean 

spectra from each cluster are highlighted in Figure 4b. 

Magnified views of the defect in the cluster image, and mean 

spectra focused on the Raman band alone, are shown in 

Figures 4c and 4d, respectively.  

The mean spectrum from the green structure in the centre of 

the defect has a lower Raman shift compared to the 

surrounding pink structure, by about 2 cm -1. This analysis 

shows, therefore, that there is likely tensile strain in the silicon 

within the defect. Similarly to PC1, the PL in the green cluster is 

lower than the outside defect and the rest of the wafer. The 

consistent reduction in PL with tensile strain provides a clear 

correlation between structure and optoelectronic 

performance.  

The cluster image in Figure 4a clearly delineates the defect 

structure identified earlier, with significant inter-defect variation 

highlighted by Cluster 6 (green) and Cluster 3 (pink). The mean 

spectra from each cluster are highlighted in Figure 4b. 

Magnified views of the defect in the cluster image, and mean 

spectra focused on the Raman band alone, are shown in 

Figures 4c and 4d, respectively.  

The mean spectrum from the green structure in the centre of 

the defect has a lower Raman shift compared to the 

surrounding pink structure, by about 2 cm -1. This analysis 

shows, therefore, that there is likely tensile strain in the silicon 

within the defect. Similarly to PC1, the PL in the green cluster is 

 

Figure 3. PCA imaging of the silicon wafer. (a) Score map and (b) loading vector plot for PC1. (c) Score map and (d) loading vector plot for PC3. 
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lower than the outside defect and the rest of the wafer. The 

consistent reduction in PL with tensile strain provides a clear 

correlation between structure and optoelectronic 

performance.  

 
Conclusion  

This Application Note highlights the value of multivariate 

techniques, specifically PCA and KMC, for analysing complex 

Raman and PL images of silicon wafers. These methods enable 

efficient dimensionality reduction and pattern recognition, 

revealing subtle variations in strain and emission properties that 

traditional univariate analysis would miss.  

Together, these tools offer a fast, reliable approach for 

interpreting high -dimensional Raman and PL images. Their 

integration into Raman microscopy workflows enhances 

material characterisation and supports a deeper understanding 

of structure -property relationships in semiconductors.  This 

approach can accelerate wafer quality control, streamline 

defect identification, and provide faster feedback during 

semiconductor manufacturing. 
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Figure 4. KMC imaging of the silicon wafer. (a) KMC image. (b) Mean spectra for each cluster. (c) Magnified view of the defect structure. (d) Magnified view of the 
Raman peak region. 
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