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Introduction

Understanding how structural defects influence the
optoelectronic performance of silicon semiconductor wafers is
crucial for optimising device efficiency and reliability.
Traditional univariate approaches, such as tracking Raman
peak shifts to assess strain or monitoring photoluminescence
(PL) intensity to evaluate non-radiative recombination in
semiconductors, are powerful but inherently limited. They
require manual feature selection and assume independent
behaviour of each parameter. This means potentially valuable
correlations  between strain, crystallinity, and emission
efficiency may be missed, or discovered only through time-
consuming manual cross-analysis.

Multivariate analysis techniques, such as Principal Component
Analysis (PCA) and K-means clustering (KMC), offer a powerful
alternative. Rather than requiring the user to choose which
spectral features to examine, these methods analyse the whole
dataset and automatically extract the most important patterns,
often revealing trends that might not have been anticipated.

These methods not only reduce the complexity of high-
dimensional Raman and PL imaging data, but also reveal
hidden correlations between structural changes and their
impact on radiative efficiency. By applying multivariate
techniques, we gain a comprehensive understanding of how
strain, crystallinity, and defect distributions collectively affect
silicon’s electronic properties and PL behaviour. Table 1
highlights several advantages that multivariate analysis has over
univariate analysis.

Table 1. Why use multivariate analysis?

Feature Univariate Multivariate ‘

Manual and prior- Automatic, data-driven

knowledge-based

Feature selection

Correlation detection Manual comparison Captured automatically

Limited Low-variance noise

filttered

Noise handling

Potential for Mathematical basis

subjectivity

Result interpretation

Scalability Time-consuming Highly scalable
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Materials and Methods

The silicon wafer analysed in this study was sourced from PI-
KEM and examined using an Edinburgh Instruments RM5
Confocal Raman Microscope equipped with an 830 nm laser,
Figure 1. The system was operated in FastMAP® mode,
enabling rapid acquisition of high-resolution spectral images.
Raman and PL signals were collected simultaneously using a
front-illuminated-CCD detector capable of detecting NIR
emissions.

Figure 1. An Edinburgh Instruments RM5 Confocal Raman Microscope.

Multivariate techniques were employed to handle the high-
dimensional data from the Raman-PL images, consisting of
thousands of spectra across the wafer. PCA was applied to
reduce data dimensionality and extract the most significant
spectral variations linked to structural and optical properties.

Additionally, KMC was used to classify regions with similar
spectral characteristics, providing clear sesgmentation of defect
sites and homogeneous areas. Data processing and
visualisation were performed in the Ramacle Python-IDE.

PCA Imaging of a Silicon Wafer for
Simultaneous Raman and PL Analysis

The region analysed on the wafer is shown in Figure 2a. An 830
nm laser was used with a 600 gr/mm grating, which meant that
the dominant phonon mode at 520 cm™ could be detected
along with the broad PL band present in the Raman spectrum
at ca. 1900 cm™, as seen in Figure 2b.

The silicon wafer dataset contains interrelated information on
strain, crystallinity, and emission efficiency that univariate
analyses often overlook; multivariate techniques, on the other
hand, automatically extract these relationships, enabling rapid
and objective interpretation of large datasets.’
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Figure 2. Initial microscopic and spectroscopic interrogation of the silicon wafer.
(a) White light image of the area analysed on the wafer. (b) A spectrum recorded
at 830 nm showing Raman and PL bands from the silicon.

The first multivariate technique used was PCA, a widely used
dimensionality reduction technique that simplifies complex
datasets while preserving the most important patterns.? To
better understand what this means, consider the spectral
image of the silicon wafer that we want to analyse. The image
was 236 pixels by 230 pixels, totalling 54,280 pixels, each
containing a spectrum with 1650 datapoints (or dimensions).
This is a huge amount of data, and it is computationally
prohibitive. PCA addresses this issue by performing a linear
transformation that outputs a small number of new variables,
designed to maximise the variance from the original dataset,
called principal components (PCs).

The Python script used in this Application Note outputs the five
PCs that explain the dominant Raman and PL modes of
variation within the original image, along with loading vectors
that show the bands contributing to the spectral variance. The
1650 dimensions of the previous dataset are reduced to five,
and the irrelevant information from the original dataset is
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filtered out as noise. Each pixel within the image will therefore
have five PC scores (PC1-5), which can be spatially mapped to
reveal the most relevant spectral changes within the dataset.

In the silicon wafer image dataset, PC1 and PC3 showed large
variations in the PL and Raman bands, respectively. Score maps
and loading vector plots for both PCs are shown in Figure 3. A
defect, shown in the blue ellipsoid in Figure 3a, was of
particular interest for this analysis because of the drastic
difference in spectral response compared to the rest of the
wafer. This region corresponds to a thin streak visible in the
white-light image of the wafer, as shown in the red box in
Figure 2a.

Figures 3a and 3b show the score map and loading plot,
respectively, for PC1. The loading plot shows that PC1
represents the contrast between the silicon Raman and PL
bands, because the Raman band at 520 cm” is strongly
negative and the PL band at 1900 cm™ is strongly positive.
Therefore, positive scoring in PC1 corresponds to a dominant
PL band, and negative scoring corresponds to dampened PL
with respect to the Raman band. The defect in the PC1 map is
scored negatively (purple and red), suggesting that the PL in
this region is weaker relative to the Raman scattering,
compared to other regions on the wafer.

The score map and loading point for PC3 are shown in Figures
3c and 3d, respectively. The loading plot shows that PC3
represents changes only in the Raman signature detected from
the silicon, with almost no contributions from the PL band.
There are large negative bands and large positive bands both
in the vicinity of 520 cm™, which indicates changes in the peak
position and/or shape of the Raman band. This PC, therefore,
indicates that PL is diminished in the defect, potentially due to
a Raman-shift changing phenomenon such as strain.

Overall, PCA indicates that, in the highlighted defect on the
silicon wafer, changes in the vibrational properties of the
material correlate with a decrease in radiative emission.

While this structure-performance relationship could be
identified by separately mapping and then comparing the
Raman peak position and PL intensity, the multivariate analysis
reveals these correlations directly and objectively, without
requiring prior knowledge of which spectral features to
examine.
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Figure 3. PCA imaging of the silicon wafer. (a) Score map and (b) loading vector plot for PC1. {c) Score map and (d) loading vector plot for PC3.

KMC Imaging of a Silicon Wafer for
Simultaneous Raman and PL Analysis

KMC was also performed on the dataset to more clearly
visualise the spatial distribution of distinct spectral signatures
across the silicon wafer. K-means is an unsupervised learning
method that partitions datasets into ‘k’ clusters based on their
similarity.

In this Application Note, it was used to group image pixels with
similar Raman and PL spectral signatures into distinct spatial
regions. It works by assigning pixels to clusters, minimising the
sum of squares within each cluster, and calculating the mean
spectrum for each cluster. In the Python script used, the 54,280
spectra making up the silicon wafer image were divided
among ten clusters. Each cluster was imaged discretely to
visualise the heterogeneity of the wafer in a way that may not
have been immediately apparent in the continuous
colourmaps used in PCA imaging. The KMC image of the
wafer is shown in Figure 4a.

The cluster image in Figure 4a clearly delineates the defect
structure identified earlier, with significant inter-defect variation
highlighted by Cluster 6 (green) and Cluster 3 (pink). The mean
spectra from each cluster are highlighted in Figure 4b.
Magnified views of the defect in the cluster image, and mean
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spectra focused on the Raman band alone, are shown in
Figures 4c and 4d, respectively.

The mean spectrum from the green structure in the centre of
the defect has a lower Raman shift compared to the
surrounding pink structure, by about 2 cm™. This analysis
shows, therefore, that there is likely tensile strain in the silicon
within the defect. Similarly to PC1, the PL in the green cluster is
lower than the outside defect and the rest of the wafer. The
consistent reduction in PL with tensile strain provides a clear
correlation  between  structure  and  optoelectronic
performance.

The cluster image in Figure 4a clearly delineates the defect
structure identified earlier, with significant inter-defect variation
highlighted by Cluster 6 (green) and Cluster 3 (pink). The mean
spectra from each cluster are highlighted in Figure 4b.
Magnified views of the defect in the cluster image, and mean
spectra focused on the Raman band alone, are shown in
Figures 4c and 4d, respectively.

The mean spectrum from the green structure in the centre of
the defect has a lower Raman shift compared to the
surrounding pink structure, by about 2 cm™. This analysis
shows, therefore, that there is likely tensile strain in the silicon
within the defect. Similarly to PC1, the PL in the green cluster is
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lower than the outside defect and the rest of the wafer. The
consistent reduction in PL with tensile strain provides a clear
correlation  between  structure  and  optoelectronic
performance.

Conclusion

This Application Note highlights the value of multivariate
techniques, specifically PCA and KMC, for analysing complex
Raman and PL images of silicon wafers. These methods enable
efficient dimensionality reduction and pattern recognition,
revealing subtle variations in strain and emission properties that
traditional univariate analysis would miss.

Together, these tools offer a fast, reliable approach for
interpreting high-dimensional Raman and PL images. Their

Cluster
Intensity

Cluster
Intensity

s

integration into Raman microscopy workflows enhances
material characterisation and supports a deeper understanding
of structure-property relationships in semiconductors. This
approach can accelerate wafer quality control, streamline
defect identification, and provide faster feedback during
semiconductor manufacturing.
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Figure 4. KMC imaging of the silicon wafer. (@) KMC image. (b) Mean spectra for each cluster. (c) Magnified view of the defect structure. (d) Magnified view of the

Raman peak region.
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